US012363080B2

az United States Patent

Meixler

a0y Patent No.: US 12,363,080 B2

(54)

(71)

(72)

(73)

*)

4y
(22)

(65)

(63)

(51)

(52)

SYSTEM AND METHOD FOR
WEB-BROWSER BASED END-TO-END
ENCRYPTED MESSAGING AND FOR
SECURELY IMPLEMENTING
CRYPTOGRAPHY USING CLIENT-SIDE
SCRIPTING IN A WEB BROWSER

Applicant: Meixler Technologies, Inc., New Hope,

PA (US)

Inventor: Michael A. Meixler, New Hope, PA
Us)

Assignee: Meixler Technologies, Inc., New Hope,
PA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 39 days.

Appl. No.: 18/377,522
Filed: Oct. 6, 2023

Prior Publication Data

US 2024/0039899 Al Feb. 1, 2024

Related U.S. Application Data

Continuation of application No. 16/704,475, filed on
Dec. 5, 2019, now Pat. No. 11,824,840.

(Continued)

Int. CL.

HO4L 9/40 (2022.01)

GO6F 16/958 (2019.01)
(Continued)

U.S. CL

CPC ... HO4L 63/0428 (2013.01); GOGF 16/958
(2019.01); GO6F 21/565 (2013.01);
(Continued)

Send Encrypted Message

To

Name: John Smith

Company: John Smith Associates, Inc.
Email: john smith@gmail.com

Subject:

(45) Date of Patent: Jul. 15, 2025
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,314,451 Bl 112001 Landsman et al.
6,418,472 Bl 7/2002 Mi et al.

(Continued)

FOREIGN PATENT DOCUMENTS

AU 2014203156 A1 * 7/2014 ... GOGF 8/60
CN 101321057 A * 12/2008
(Continued)

OTHER PUBLICATIONS

Emily Stark; (From Client-side Encryption to Secure Web Appli-
cations); pp. 55; Jun. 2013.*

(Continued)

Primary Examiner — Ali H. Cheema
(74) Attorney, Agent, or Firm — Caesar Rivise, PC

(57) ABSTRACT

A system and method for sending end-to-end encrypted
messages comprising a sender’s web browser, a recipient’s
web browser, and a server. The system and method avoid
both the sender and the recipient having to download
encryption programs themselves onto their respective com-
puters. In addition, the system and method ensure that
unencrypted messages are never disclosed to the server. The
system and method operate by first downloading the web
browser files, verifying them and then preventing the web
browser page from refreshing, thereby preventing malicious
code from entering the web browser each time the web
browser page would normally be refreshed. The system and
method also provide for securely implementing cryptogra-
phy using client-side scripting in a web browser.

2 Claims, 23 Drawing Sheets

Enter Message Text Below:

Attached Files:

Drag and drop files to be attached to the message into
| this dropzone, or click here to select files. 1

All information sent through EncryptedSend is encrypted from end-to-end.
Engryﬁtion takes place in the sender’s web browser, and decryption takes place

intl

& recipient’s web browser. Only encrypted infomration is sent through

Encry/psedSend's servers. Unencrypted information anc the keys used ta

enarypt

‘decrypt this information never leave the sender’s web browser or the

recipient’s web browser.

Encrypt and Send

US 12,363,080 B2

Page 2
Related U.S. Application Data 2014/0331119 Al 112014 Dixon et al.
2015/0149775 Al 5/2015 Gadotti
(60) Provisional application No. 62/928,737, filed on Oct. 2015/0195253 Al 7/2015 Ander et al.
31, 2019, provisional application No. 62/800,800, 2015/0207783 Al* 7/2015 Templin ... HO4L 63/10
filed on Feb. 4, 2019. 713/171
2015/0312217 A1* 10/2015 Lee ..cccovvvrvnvenenne HOAL 63/168
(51) Int.CL . 1o : 713151
GO6F 21/56 (2013.01) 2015/0350179 A1* 12/2015 Kobayashi HO04L 33/61/2
GOG6F 40/14 (2020.01) 2016/0294561 Al 10/2016 Base et al.
HO04L 9/06 (2006.01) 2017/0149782 Al 5/2017 Bender et al.
HO4L 9/32 (2006.01) 2017;0193464 Al* 7;2017 SZﬁr)
2017/0244729 Al 82017 Fahrnyccceo. GO6F 21/552
HO4L 67/02 (2022.01) 2018/0018468 Al 1/2018 Willia}rlns et al.
(52) US. CL 2018/0124007 Al 52018 Ploch et al.
CPC GOG6F 40/14 (2020.01); HO4L 9/0643 2018/0137303 Al* 5/2018 Farkash GOG6F 21/6263
(01 0L 93207 QU0 GO 0ISEO A0 700 B o 02
. . 2 NN
2221/033 (2013.01); HO4L 9/0§3] (2013.01); 2018/0351921 Al 122018 Sharifi Mehs
HOAL 9/0637 (2013.01); HOAL 9/3263 2019/0042283 Al* 2/2019 Utbach GOGF 9/44594
(2013.01); HO4L 67/02 (2013.01) 2019/0089706 Al 3/2019 Rose et al.
2019/0306248 Al 10/2019 Swarangi et al.
(56) References Cited 2020/0128086 Al* 4/2020 Lewisoc.... GOGF 16/9554
2020/0404005 A1 12/2020 Greevy
U.S. PATENT DOCUMENTS 2022/0222342 Al 7/2022 Ma
6,477,550 B1 11/2002 Balasubramanian et al. FORFEIGN PATENT DOCUMENTS
7,565,543 Bl 7/2009 Mungale
8,542,823 Bl 9/2013 Nguyen et al. CN 102332071 A 1/2012
8,769,260 B1* 7/2014 Kwan HO4L 63/0471 CN 101689989 B 7/2012
713/153 CN 104468477 A 3/2015
9,129,095 Bl 9/2015 Lam et al. CN 104503760 A * 4/2015
9,148,428 Bl 9/2015 Banga et al. CN 108667799 A 10/2018
9,245,108 Bl 1/2016 Khajuria et al. EP 2685682 A2 1/2014
9,292,709 B1* 3/2016 Hundt ... GOGF 8/31 EP 3026557 A1 * 6/2016 ... GOG6F 11/1004
9,426,171 B1* 8/2016 Jezorek . . HO4L 63/1441 Jp 2000250408 A 9/2000
9,524,398 B1* 12/2016 Hundtcccccoe. GOGF 8/31 Jp 2008250903 A 10/2008
9,635,041 Bl 4/2017 Warman et al. Jp 4581280 B2 * 11/2010
9,680,873 Bl 6/2017 Halls et al. Jp 4656359 B2 * 3/2011
10,505,736 Bl 12/2019 Meixler KR 20130077359 A 7/2013
2002/0049819 Al1* 4/2002 Matsuda AG63F 13/335 WO WO0-0049786 Al * 8/2000 G06Q 20/341
709/206 WO WO0-2016179957 Al * 11/2016 GOGF 9/44
2002/0162003 Al1* 10/2002 Ahmed HO4L 63/12
713/176
2003/0105888 Al 6/2003 Connelly et al. OTHER PUBLICATIONS
2004/0019780 Al 1/2004 Waugh et al. « N . . L
2004/0049673 Al 3/2004 Song et al. Ptacek, T. “What’s the Chicken-Egg Problem With Delivering
2007/0174915 Al 7/2007 Gribble et al. Javascript Cryptography?”, http:/www.matasano.com/articles/
2007/0192854 Al 8/2007 Kelley et al. javascript-cryptography. (2011).
2007/0300057 Al 12/2007 Corcoran et al. White, K., “Firefox Send Is An Fasy Way to Share Large Files
2009/0006860 Al 1/2009 Ross S v hitos:// ired com/storv/firefox-send- ted-
2009/0110194 A1* 4/2009 AthSADD w.vvvovnnn. HO4N 21/2541 ccurely”, ps://www.wired.coinstory/lrelox-send-encrypte
380/200 large-files. (2019).
2009/0144382 Al 6/2009 BenninghofT, III “Web Crypto API”, https://developer.mozilla.org/en-US/docs/Web/
2009/0287931 A1 11/2009 Kinsella API/Web_Crypto_API. (2019).
2011/0016169 Al 1/2011 Cahill et al. “What do client side and server side mean? Client side vs. server
2011/0191366 Al 82011 Eustace et al. side.” Cloudfare, 2022, retrieved on Dec. 20, 2022 from https:/
%85;8?32552 ﬁ} N léggg Ei?:ggnetal """"" HO4L 9/3247 \S)Z\r)vvv;.c;iodlédﬂare.com/learning/serverless/glossary/client-side-vs-
2012/0215831 Al E3 8/2012 Urbach """""""" G06F ;}34{;;46‘ Dong et al" “PrOteCtlng Sens,l,tlve Web Content from Cllent-Slde
Vulnerabilities With Cryptons”. (2013).
799/203 gtark, “From Client-Side Encryption to Secure Web Applications”
2013/0019090 Al* 1/2013 Wickerc....... HO4L 63/1466 ark, ~urom Lent-bide LICIVPLon o secure Web Applcations,
713/151 Massachusetts Institute of Technology (2013).
2013/0198521 Al 82013 Wu D’ Angelo et al., “Content Cloaking: Preserving Privacy With Google
2013/0262851 Al 10/2013 Hirvonen Docs and Other Web Applications” (2010).
2014/0123279 Al 5/2014 Bishop et al.
2014/0173744 Al 6/2014 Borohovski et al. * cited by examiner

U.S. Patent Jul. 15, 2025

Sender

Sender points web

browser to unique

contact URL for recipient
HTTPS GET
https://domain.tld?contact=x

Client-side scripting running _

within sender's web browser
requests recipient's certificate
via the API based on recipient's
id in URL above.

Client-side scripting running
within sender’s web browser
verifies server’s certificate
signature and client’s
certificate signature.

Sender composes message to
recipient and optionally
attaches one or more files.
Client-side scripting running
within sender's web browser
derives a symmetric
encryption key based on
recipient's public key from
certificate. Message is
encrypted using derived key.
Encrypted message payload
uploaded to server via API.

Sheet 1 of 23 US 12,363,080 B2

Server

\j

HTML, CSS, and
Client-side scripting files.

y

Server returns recipient’s
certificate via the APL.

Server stores encrypted
message payload and
optionally notifies recipient
of message received.

\j

FIG. 1A

U.S. Patent

Recipient

Recipient points web browser
to URL for service HTTPS GET
https://domain.tid/

Recipient provides secret key ™

file. Client-side scripting
running within recipient's web
browser extracts recipient's
ECDH key pair from secret key
file, then requests user account
information.

Client-side scripting running -

within recipient’s web browser
displays user account
information returned by the
API. User requests log of
messages received. Client-side
scripting running within
recipient’s web browser
requests log of messages
received from server via the API.

Client-side scripting running
within recipient's web browser

decrypts subject and text of

each message using recipient's
private key to derive the
symmetric encryption key used
by the sender to encrypt these
parts. Metadata of each
message is then displayed,
along with decrypted subject,
text, and list of attached files
for each message.

FIG. 1B-1

Jul. 15, 2025

Sheet 2 of 23

\j

Yy

i

To FIG. 1B-2

US 12,363,080 B2

Server

HTML, CSS, and Client-side
scripting files

Server APl authenticates
recipient by cryptographically
verifying that recipientis in
possession of the private key
corresponding to the public
key sent in the recipient's
request. Upon successful
authentication, server API
queries database to fetch user
account information and
returns this information.

Server APl authenticates
recipient by cryptographically
verifying that recipientis in
possession of the private key
corresponding to the public
key sent in the recipient's
request. Upon successful
authentication, server API
queries database to fetch
metadata for each message.
Server APl returns metadata,
along with the encrypted
subject, text, and list of
attached files for each
message.

U.S. Patent

Recipient

Recipient requests file
attached to a message.
Client-side scripting running
within recipient's web browser
requests encrypted file from
server via the APIL.

Client-side scripting running
within recipient's web browser
decrypts attached file using
recipient's public key and
makes the file available to the
user to open or save to their
system.

FIG. 1B-2

Jul. 15, 2025

Sheet 3 of 23

To FIG. 1B-1

A

y

US 12,363,080 B2

Server

Server APl authenticates
recipient by cryptographically
verifying that recipient is in
possession of the private key
corresponding to the public
key sent in the recipient's
request. Upon successful
authentication, server API
returns attached file encrypted
by the sender using the
recipient's public ECDH key.

U.S. Patent Jul. 15, 2025 Sheet 4 of 23 US 12,363,080 B2

10 20

L

T

Sender Receiver
Computer Computer

FIG. 1C

U.S. Patent

Client

Generate ephemeral key pair
HTTPS GET Request:
/api/query.php?phase=handsh
ake
&clientpermanentpublickeyx=
X&clientpermanentpublickeyy
&clientephemeralpublickeyx=X
&clientephemeralpublickeyy=X

Verify that server permanent

public key matches pinned key =

Verify received keys are valid
Compute shared secret
Generate exchange hash
Verify server's signature

Sign exchange hash

Jul. 15, 2025

Sheet 5 of 23

FIG. 2A

US 12,363,080 B2

Server

Verify received keys are valid
Generate ephemeral key pair
Compute shared secret
Generate exchange hash
Sign exchange hash
Temporarily store shared
secret and exchange hash
referenced by
clientpermanentpublickey
and
clientephemeralpublickey
HTTPS GET Response:
header(‘Content-type:
application/json;
charset=utf-8');
header("HTTP/1.1 200");
{

“status™:200,

"status_message":"success’,

"handshakeresponse™:

{

"serverpermanentpublickeyx”
:"XII'I

"serverpermanentpublickeyy"
:"X"’
"serverephemeralpublickeyx™:
"X"’
"serverephemeralpublickeyy™
H‘X",

"serversignedexchangehash™
HX“

}
}

U.S. Patent

Client

Encrypt plaintext request using
AES-GCM with shared secret
created in phase 1

HTTPS GET Request:
/api/query.php?phase=handsh
ake
&clientpermanentpublickeyx=
X&clientpermanentpublickeyy
=X

&clientephemeralpublickeyx=X
&clientephemeralpublickeyy=X
&encryptedrequest=X

Decrypt response using _

AES-GCM with shared secret

Jul. 15, 2025

Sheet 6 of 23

y

FIG. 2B

US 12,363,080 B2

Server

Verify received keys are valid
Retrieve shared secret and
exchange hash referenced by
clientpermanentpublickey
and
clientephemeralpublickey
Verify client's signature
Decrypt request using
AES-GCM with shared secret
If request requires
authentication, identify user
by the permanent public key
sent in the request and
authenticate
Process request
Encrypt response using
AES-GCM with shared secret
HTTPS GET Response:
header('Content-type:
application/json;
charset=utf-8)
header("HTTP/1.1 200")
{

“status™:200,

"status_message":"success’,

"encryptedqueryresponse”:"X

}

U.S. Patent

Client

Encrypt plaintext request using
AES-GCM with shared secret
created in phase 1

HTTPS GET Request:
/api/query.php?phase=handsh
ake
&clientpermanentpublickeyx=
X&clientpermanentpublickeyy
&clientephemeralpublickeyx=X
&clientephemeralpublickeyy=X
&encryptedrequest=X

Decrypt response using

AES-GCM with shared secret

Jul. 15, 2025

Sheet 7 of 23

Y

FIG. 2C

US 12,363,080 B2

_Server

Verify received keys are valid
Retrieve shared secret and
exchange hash referenced by
clientpermanentpublickey
and
clientephemeralpublickey
Verify client's signature
Decrypt request using
AES-GCM with shared secret
If request requires
authentication, identify user
by the permanent public key
sent in the request and
authenticate

Process request

Encrypt response using
AES-GCM with shared secret
HTTPS GET Response:
header('Content-type:
application/octet-stream’)
header("HTTP/1.1 201")
[byte stream]

U.S. Patent Jul. 15, 2025

Client

Encrypt plaintext command and
data using AES-GCM with shared
secret created in phase 1

HTTPS POST to /api/query.php
HTTPS POST Payload
Clientpermanentpublickeyxbytes +
clientpermanentpublickeyybytes +
Clientephemeralpublickeyxbytes +
clientephemeralpublickeyybytes +
clientsignedexchangehash +
encryptedcommandanddata

Sheet 8 of 23

Decrypt response using
AES-GCM with shared secret

FIG. 2D

US 12,363,080 B2

Server

Verify received keys are valid
Retrieve shared secret and
exchange hash referenced by
clientpermanentpublickey
and
clientephemeralpublickey
Verify client's signature
Decrypt request using
AES-GCM with shared secret
If request requires
authentication, identify user
by the permanent public key
sentin the request and
authenticate
Process request
Encrypt response using
AES-GCM with shared secret
HTTPS GET Response:
header('Content-type:
application/json;
charset=utf-8')
header("HTTP/1.1 200")
{

"status":200,

"status_message":"success’,

"encryptedqueryresponse”:"X

}

U.S. Patent

Operation

Phase 2 APl Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Request
Plaintext Response
Authentication Required

Description

Operation

Phase 2 APl Schema
Phase 2 HTTPS Method

Phase 2 HTTPS Response

Content-Type
Plaintext Request

Plaintext Response
Authentication Required

Description

Operation

Phase 2 APl Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Request

Plaintext Response
Authentication Required

Description

Operation
Phase 2 APl Schema

'

To FIG. 2E-2

Jul. 15, 2025

Sheet 9 of 23 US 12,363,080 B2

echo
Fig. 2B
GET

application/json

command=echo

&value=str

JSON formatted response containing string sentin request
No

Returns the string provided as the input parameter. Used for
testing purposes.

getcertificate
Fig. 2B
GET

application/json

command=getcertificate

&shortcode=x

JSON formatted response containing the requested recipient’s
certificate

No

Used to retrieve a recipient’s certificate, given the first few bytes
ofthe X value of the recipient’s public ECDH key.
getaccountrecord

Fig. 2B

GET

application/json

command=getaccountrecord

JSON formatted response containing account information of
authenticated user

Yes

Used to retrieve account information for user, given the user's
public key, after authenticating.

getmessages
Fig. 28

FIG. 2E-1

U.S. Patent

To FIG. 2E-1

T

Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Request

Plaintext Response
Authentication Required
Description

Operation

Phase 2 APl Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Request

Plaintext Response
Authentication Required
Description

Operation

Phase 2 API Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Request

Plaintext Response
Authentication Required
Description

Operation

Phase 2 AP| Schema
Phase 2 HTTPS Method

'

To FIG. 2E-3

Jul. 15, 2025

Sheet 10 of 23 US 12,363,080 B2

GET

application/json

command=getmessages

&direction=received

JSON formatted response containing records of messages
received

Yes

Used for showing logs of messages received

getmessages

Fig. 2B

GET

application/json

command=getmessages

&direction=sent

JSON formatted response containing records of messages
received

Yes

Used for showing logs of messages sent

getmessagepart

Fig. 2C

GET

application/octet-stream

command=getmessagepart

&messageid=x&part=y

Byte stream containing truncated encrypted message payload
including requested part

Yes

Used for retrieving parts of messages sent and received by users

postmessage
Fig. 2D
POST

FIG. 2E-2

U.S. Patent

To FIG. 2E-2

T

Phase 2 HTTPS Response
Content-Type

Plaintext Post Data
Plaintext Response
Authentication Required
Description

Operation

Phase 2 AP] Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
ContentType

Plaintext Post Data
Plaintext Response
Authentication Required

Description

Operation

Phase 2 AP| Schema
Phase 2 HTTPS Method
Phase 2 HTTPS Response
Content-Type

Plaintext Post Data
Plaintext Response
Authentication Required

Description

Jul. 15, 2025

Sheet 11 of 23 US 12,363,080 B2

application/json

'postmessage’ + 0x00 + encrypted message payload file
JSON formatted response indicating success or failure
No

Used for sending encrypted messages

register?
Fig. 2D
POST

application/json

'register1’ + 0x00 + URL -encoded account data

JSON formatted response indicating success or failure

No

Used for registering new users. Server sends email to user with
verification URL. Verification ~ URL contains AES -GCM
encrypted user account information. AES -GCM key is known to
server only.

register2
Fig. 2D
POST

application/json

'register2’ + 0x00 + AES -GCM encrypted user account
information contained in URL sent in verification email by
register1 operation

JSON formatted response indicating success or failure

No

Used upon verification. Input is decrypted and stored in record
for new user

FIG. 2E-3

U.S. Patent Jul. 15, 2025 Sheet 12 of 23 US 12,363,080 B2

Register

Follow the next few steps to create your account at EncryptedSend.com.

During the process, you'll create a secret key file which you will use to login to your
account at EncryptedSend.com and dcrypt messages that your contacts send to you.
At the end of the process, you'll have a link to a form that your contacts can use to
send sensitive messages, files, and documents to you securely.

Step 1: Your Contact Info

First Name L John |
Last Name | Smith l
Company | John Smith Associates, Inc. |
Email Address | john.smith@gmail.com |

|

Email Address (retype) Liohn.smith@gmail.com

Next

FIG. 3A

U.S. Patent Jul. 15, 2025 Sheet 13 of 23 US 12,363,080 B2

Register
Step 2: Create Your Secret Key

In this step, you'll create a secret key. Your secret key is stored in a file and is
protected with a passphrase. You'll need your secret key file and your passphrase in
order to login to your account at EncryptedSend.com and decrypt messages that
you've sent and received through EncryptedSend.com. It is critical that you choose a

strong passphrase and store your secret key file securely.

Important:
« Don't lose your secret key file or forget your passphrase.
These cannot be recovered!
« Be sure to choose a strong passphrase and store your secret key file securely.
If an attacker steals your secret key file and guesses (or cracks) your passphrase,
they can access your account at EncryptedSend.com and they can decrypt
messages that you've sent and received through EncryptedSend.com!

« Your secret key file and passphrase never leave your web browser, and are
never sent to our servers.

Choose a passphrase to protect your secret key file:

v Password strength: 3/4
(3/4 required, 4/4 recommended)

| sessessessesae |

Passphrase
Passphrase (retype)

sessessenssans * V Passphrase and retyped
passphrase match

Create Secret Key File

FIG. 3B

U.S. Patent Jul. 15, 2025 Sheet 14 of 23 US 12,363,080 B2

Register
Step 3: Save Your Secret Key File

Click the button below to save your secret key file to your system.
Remember to store your secret key file securely!

Save Secret Key

FIG. 3C

U.S. Patent Jul. 15, 2025 Sheet 15 of 23 US 12,363,080 B2

Secret Key File

Version Data (12 bytes)

PBKDF?2 iterations (4 bytes)

PBKDF?2 salt (16 bytes)

ECDH Public Key X (32 bytes)

ECDH Public Key Y (32 bytes)

IV (12 bytes)

Encrypted ECDH Private Key (48 bytes)

FIG. 4A

US 12,363,080 B2

Sheet 16 of 23

Jul. 15, 2025

U.S. Patent

dv Dl

'91€211193 3y} U] A3y d1jgnd ay3 03 buipuodsaiod
A3 91eA1d DY) JO UOISSISSOd U S1 11U BYL 1eY] SWILUOD SIY] "91edL13ad paubis-1ualjd 9yl ul peojhed ay) Jano
2In1eubISIUSI Y1 AJLISA 03 Pasn S| elep 21ed41148D 9Y3 woiy A3y d1jgnd s,3uaid ay3 ‘2inleubis s3udl|d 9yl AHISA O

'91e2411492 paubis-19n9s
3y31 ul peojAed oY1 1910 21n1eUDISIDAIDS Yl AJLISA 01 pasn s Ay dijgnd S,49AJ9S 9Y1 ‘Dun1eubis 19195 94l ALIIOA O]

{
59K, ; dnubisieswiia1019316yY>,
" I8 70JeeEIP L 8670 PP AL PYERSIDIGID/80R6YS L T 1 A090v0999 1164205 Y. XUALdiignd,

WJEB6PPYLTRYPEPEIPIE LI9078FESALOLSE L LPI68IOIEPBE LOPE LI LGIEDJO6H T, XoUxAdIgNd,

‘1L L., UOISISASIED YIS,
WLLTTLY LS, palealdalep,
Lwodjlewbayws uyol,:, jlews,
3U] ‘Z X, Auedwiod,

WYHWS,: dweusel,

* uyor,:,oweulsiy,

}

:e1ep 918211492 Ul Bunnsas ‘papodap y9-aseq si peojied

{
S==mgboiry,:,2ineubisiusl)d,
‘== XewrAs,:, peojled,

w

}

19185113492 paubis-1udl|d ui bunsas ‘papodsp $9-3seq si peojhed

{

J==M"Y3pigb,,21n3eUbISI9NISS,
\:”OC-..X>\S“.>w=“ 1 Umo_>ma=
}

1915411493 PaubIs-19AI9S

U.S. Patent Jul. 15, 2025 Sheet 17 of 23 US 12,363,080 B2

Send Encrypted Message

To

Name: John Smith

Company: John Smith Associates, Inc.
Email: john.smith@gmail.com
Subject:

Enter Message Text Below:

Attached Files:

r——_—————————_—1

Drag and drop files to be attached to the message into
| this dropzone, or click here to select files. |

L———_———_——_—__J

All information sent through EncryptedSend is encrypted from end-to-end.
Encryption takes place in the sender’s web browser, and decryption takes place
in the recipient’s web browser. Only encrypted infomration is sent through
EncrypsedSend’s servers. Unencrypted information and the keys used to
encrypt/decrypt this information never leave the sender’s web browser or the
recipient’s web browser.

Encrypt and Send

FIG.5

U.S. Patent Jul. 15, 2025 Sheet 18 of 23 US 12,363,080 B2

Parts Data Payload Bytes
Metadata Bytes

part[0]l.name + part[0O].type +

part[0].hash Version Data (12 bytes)
part[1].name + part[1].type + Payload Date (4 bytes)
part[1].hash

Sender Public Key X (32 bytes)
Sender Public Key Y (32 bytes)
part[N-1].name + Recipient Public Key X (32 bytes)
part[N-1].type + part[N-1].hash Recipient Public Key Y (32 bytes)
Length of parts data cipher (4 bytes)
Length of signed header (4 bytes)
Length of partcipherbytes[0] (4 bytes)
Length of partcipherbytes[1] (4 bytes)

Length of partcipherbytes[N-1] (4 bytes)
0x00 0x00 0x00 0x00 (4 bytes)

Parts Data Cipher

AESGCM(DerivedKey, Partsdata)

Signed Header

sign(senderprivatekey, metadatabytes +
partsdata)

Payload Cipher Bytes

AESGCM(DerivedKey, partplaintextbytes[0])
(partcipherbytes[0])

AESGCM(DerivedKey, partplaintextbytes[1])
(partcipherbytes[1])

AESGCM(DerivedKey,
partplaintextbytes[N-1])
(partcipherbytes[N-1])

FIG. 6

U.S. Patent Jul. 15, 2025 Sheet 19 of 23 US 12,363,080 B2

Login

r—_—_—_—_—_-—_—1

To login, drag and drop your secret key file into this
| dropzone, or click here to select your secret key file. |

L_____-________J

Enter passphrase to unlock secret key file:

| |

Neither your secret key file or your passphrase leave your web
browser during this process. Your authenticity is verified cryptographically
using your secret key file and your passphrase, without either of these being
sent to our servers or anywhere else.

Login

FIG. 7

U.S. Patent Jul. 15, 2025 Sheet 20 of 23 US 12,363,080 B2

Welcome | Account || View Received || View Sent Send
JohnS! | Summary Messages Messages || Message

Account Summary

Name: John Smith

Company: John Smith Associates, Inc.

Email: john.smith@gmail.com

Link to your secure contact form at https://www.encryptsend.com/johnsmith

EncryptSend. Your contacts can
send messages, documents and files
to you securely at:

FIG. 8

U.S. Patent Jul. 15, 2025 Sheet 21 of 23 US 12,363,080 B2

Messages Received

From: Unknown

Date: Wed Jan 30 2019 13:34:14 GMT-0500 (EST)

Subject: Test Message to John Smith, Including Attached File,
1/30/2019 1:35 PM EST

Attachments: AttachedDocument.pdf

Hide Message

Jam pudeat vim ita movere maxima igitur nihili. Originis cognitio temporis vi naturali
ne. Memores revolvo hos ponitur haberem rei est vox movendi ejusdem. Omne duo
cum ipse fert tria rum vera. Seu nemoque frigida nostrae quasdam nec. Ad du haud
et quas foco visu dare meas me. Ea externa relabor de duratio. lllo addo ente si in
quis ne hinc hanc. Agnoscitur attendendo eos argumentum attendenti intelligat ens
antedictis hoc nia. Omniscium et veniebant potestate evidentem consuetae ad et
quocunque eo.

Eo tactu atillud ad terra. Frigoris uno sae scriptum superare hesterna cur. In re videre
du mellis platea nondum impetu creari. Percipere corporeis aliquanto de incurrant id
perceptio. Perfectis et ex remotiora affirmare affirmans desinerem somniorum.
Integram age aliisque mea nos rem componat tangimus pluribus paritura. Habituros
instituti delibarem ei somniorum de ob si. Varias eo ob longum im humana ii.

From: Unknown
Date: Wed Jan 30 2019 13:31:38 GMT-0500 (EST)
Subject: Test Message to John Smith

1/30/2019 1:33 PM EST
Attachments:

Hide Message ~

Ideamque interdum diversum co attentum ex incipere. Deum sint nolo ut quia spem
dura ut. Nexum deo seu tam aliud timet. Tum videlicet distincte dei non sic
admittere suffossis deciperer. Alienum mutatur mo ob at apertum. Uno usitata
immensi mem reducit. Examinare dat generalia sim non experimur.

Cap hominem diverso conabor ita conatus dispari nec necesse. Deinceps dum
contumax utilitas aetheris advenire nec via. Pro serie causa nudam debet ideas sum
nam qui verum. Me homines ex assidue ut defectu hominem an. Statuere vox est
profecto incipere. Mutationum re rationibus cogitantem ab durationem ut
imaginabar de. Haud ullo visu sex adeo illi eae apti. Habentur ea ac ad videntur
meliores interdum.

FIG.9

U.S. Patent Jul. 15, 2025 Sheet 22 of 23 US 12,363,080 B2

User begins session with
1 conventional web

N~ browser system

—
-l

Y
A set of files defining a
5 web page is downloaded

N by user’s web browser
from server.

Possible malicious _____________
code insertion here

4
J
3 Is user User tak
ready to end SErtakes
session? action

. —1 Exit

FIG. 10
(PRIOR ART)

U.S. Patent Jul. 15, 2025 Sheet 23 of 23 US 12,363,080 B2

User begins session with

system 20 —~—100

110

Y
A set of files defining a single
persistent web page which
remains loaded in the user’s

Possible mgalicious
code insertion here

Possi_ble malicious
code insertion here

, web browser throughout the .
duration of the user’s session
with the system is downloaded
by the user’s web browser from

B the web server -
A)
A hash of 130A] The digital
| Exemplary | one or more signature of |
l Cyrpto?rap IC| filesin the Reference one or more Public key & ||
| Analyses set of files is hash from filesin the digital 1
| Processes | takenand [T trusted set offilesis [*~7] signature |,
| compared to source verified from trusted I
130 L a reference using the source
! hash & signer’s S |
l ublic ke I
{ 131 p ‘ y 131A]
‘ 133 —-___—_—___1' ‘]32A l
| \ 1
1 - x
(Do the Possible NO l%the_ }
hashes match? COMPromise. |q------ verification
| Exit. successful? I
! I
! }

YES
L - | — L — - — — —]
<__________________________.________________-:
User
- interface —~—160
updated
i
140
Is user \ Browser
ready to end User takes , connectsto (~_150
session? action web server
via API

FIG. 11

US 12,363,080 B2

1
SYSTEM AND METHOD FOR
WEB-BROWSER BASED END-TO-END
ENCRYPTED MESSAGING AND FOR
SECURELY IMPLEMENTING
CRYPTOGRAPHY USING CLIENT-SIDE
SCRIPTING IN A WEB BROWSER

CROSS-REFERENCE TO RELATED
APPLICATIONS

This Continuation application claims the benefit under 35
U.S.C. § 120 of application Ser. No. 16/704,475 (now U.S.
Pat. No. 11,824,840), filed on Dec. 5, 2019, entitled SYS-
TEM AND METHOD FOR WEB-BROWSER BASED
END-TO-END ENCRYPTED MESSAGING AND FOR
SECURELY IMPLEMENTING CRYPTOGRAPHY
USING CLIENT-SIDE SCRIPTING IN A WEB BROWER,
which in turn claims the benefit under 35 U.S.C. § 119(e) of
Application Ser. No. 62/800,800 filed on Feb. 4, 2019 and of
Application Ser. No. 62/928,737 filed on Oct. 31, 2019 and
both of which are entitled SYSTEM AND METHOD FOR
WEB-BROWSER BASED END-TO-END ENCRYPTION
and all of whose entire disclosures are incorporated by
reference herein.

BACKGROUND OF THE INVENTION

The present invention relates in general to the field of
information security, and more particularly, to a system and
method for sending end-to-end encrypted messages com-
prising a sender’s web browser, a recipient’s web browser,
and a server; and for securely implementing cryptography
using client-side scripting in a web browser.

It is common for users of the internet to have a need to
exchange information in a secure and confidential manner.
For example, accountants, attorneys, medical professionals,
etc., frequently have a need to exchange confidential infor-
mation with their clients or associates. Because standard
SMTP email does not provide a means for encrypting
information from the sender’s end of an email transmission
to the recipient’s end of an email transmission, users have
sought solutions to use instead of SMTP email, or in
conjunction with SMTP email, for exchanging information
confidentially and securely.

In 1991, a program by the name of ‘Pretty Good Privacy’
(PGP) was released, followed later by an open-source com-
patible version by the name of ‘GNU Privacy Guard’ (GPG).
These programs implement public key encryption using an
asymmetric encryption algorithm such as RSA. Using these
programs, a sender can encrypt a message for a recipient
using the recipient’s public key, then send the message to the
recipient via SMTP email or via some other transport
method. These solutions provide end-to-end encryption,
however they require both the sender and the recipient to
install the program. These programs also require the user to
have a degree of technical know-how and a basic under-
standing of cryptography.

As the world wide web evolved, file sharing services
emerged, which claim to allow users to share files securely.
These services typically allow users to share files by way of
the following procedure: First, the service allows a sender to
upload a file using their web browser to the service’s server
through an SSL/TLS connection. The SSL/TLS connection
ensures that the file is encrypted while in transit from the
sender’s web browser to the service’s server. Then, upon
receiving the file at the service’s server, the file is immedi-
ately encrypted by the service using a symmetric encryption

10

15

20

25

30

35

40

45

50

55

60

65

2

algorithm such as AES, so that the file is encrypted while at
rest while stored on the service’s server. The AES encryption
key is also stored by the service. Later, when the file is
requested by the recipient, the service uses the encryption
key to decrypt the file. Then, the service allows the recipient
to download the file using their web browser from the
service’s server through an SSL/TLS connection. The SSL/
TLS connection ensures that the file is encrypted while in
transit from the service’s server to the recipient’s web
browser. However, those skilled in the art will quickly notice
that this is not an end-to-end encryption solution. There are
points in time when the file is unencrypted while in the
service’s possession—specifically immediately after the
sender uploads the file, and immediately before the recipient
downloads the file. Moreover, even though files sent through
the service are encrypted while stored by the service, the
service has the ability to decrypt these files at any time,
because the service also has possession of the encryption
keys. Notwithstanding, these services are sometimes seen as
more convenient than other solutions, because they can be
accessed using a web browser, eliminating the need for the
sender and/or recipient to install special software. In some
implementations, only the recipient must be setup for the
service, and senders can send files to a recipient without
being setup on the service, simply by knowing the recipi-
ent’s username, address, or unique URL on the service.

More recently, encrypted messaging apps have emerged.
Like PGP and GPG, these apps implement true end-to-end
security. However, both the sender and recipient must have
these apps installed in order to share messages and files
through this solution, and these solutions are not web
browser based.

Looking at all of the above solutions, one skilled in the art
will notice that there is a void that is not currently filled.
What is needed is a system and method that enables users to
share files using a web browser, with true end-to-end encryp-
tion. In addition, senders should be able to send files and
messages to recipients without the need for senders to be
setup on the service, simply by knowing a unique username,
address, or URL for a recipient. Finally, users should have
a way of ensuring that the files downloaded by the user’s
web browser from the server during the user’s session with
the system have not been compromised in a way that could
disclose the user’s sensitive information that they send
and/or receive through the system, or disclose the user’s
private encryption keys. This application discloses such a
system and method.

The system and method disclosed herein is based on
cryptography implemented using client-side scripting in a
web browser. The problem of securely implementing cryp-
tography in a web browser using client-side scripting origi-
nating from an untrusted server is a problem that has
confounded information security professionals for years.
The problem is perhaps described best in a 2011 article
written by Thomas Ptacek, founder of Matasano Security
(which was later acquired by NCC Group), available at the
Matasano Security website, where Ptacek describes the
“chicken-egg problem” with delivering javascript cryptog-
raphy, and summarizes the problem concisely by stating, “If
you . . . don’t trust the server not to keep user secrets, you
can’t trust [the server] to deliver security code”. Moreover,
in a March 2019 article on wired.com about an encrypted file
sharing service recently launched by Mozilla (maker of the
popular Firefox web browser), available at the Wired web-
site, co-director of the Open Crypto Audit Project, alludes to
the same problem, where he states, “ . . . every time you hit
their server, they could push new code. The problem is, the

US 12,363,080 B2

3

user doesn’t have any guarantees of what version of soft-
ware that is”. This problem is also frequently discussed on
numerous blogs, forums, and web sites focused on informa-
tion security.

To put the problem in the context of the present invention,
the server in the system and method disclosed herein is
inherently untrusted, hence the reason that all messages that
pass through this server are encrypted using keys unknown
to the server. However, the sender and recipient must rely on
this server to provide the client-side scripting that facilitates
the encryption in the sender’s web browser and the decryp-
tion in the recipient’s web browser. A rogue or compromised
server could simply provide malicious client-side scripting
that captures unencrypted messages (or the encryption keys
used to encrypt or decrypt these messages) at either the
sender’s end or the recipient’s end, and unbeknownst to the
user, passes the unencrypted messages (or encryption keys)
back to the server. This application discloses a system and
method that solves this problem.

All references cited herein are incorporated herein by
reference in their entireties.

BRIEF SUMMARY OF THE INVENTION

A method for implementing web browser based end-to-
end encryption over the Internet while avoiding the need for
senders and recipients themselves having to install encryp-
tion programs on their respective computer devices is dis-
closed. The method comprises: loading a web browser on a
computer (first web browser) associated with the sender and
in communication with a web server on the Internet; loading
a web browser on a computer (second web browser) asso-
ciated with the recipient and in communication with the web
server on the Internet; running client-side scripting within
the first web browser to encrypt any message created by the
sender and transmitting the encrypted message to the web
server such that the unencrypted message is never disclosed
to the web server; and running client-side scripting within
the second browser to decrypt any encrypted message
received from the sender via the web server so that the
recipient is able to read the message.

A method of a web browser interacting with a web server
during a user session that prevents the entry of malicious
code therein is disclosed. The method comprises: generating
a set of files that define a single persistent web page and
making the set of files available for download from a web
server; downloading, by a user’s web browser, the set of files
from the web server at the start of a user’s session with a web
application; rendering, by the user’s web browser, a web
page defined by the set of files; and the set of files remaining
loaded in the user’s web browser throughout the duration of
the user’s session with the web application such that the
user’s web browser does not execute a full refresh of the web
page at any time during the user’s session with the web
application that prevents the entry of malicious code therein;
the set of files instructing the user’s web browser to interact
with the user without executing a full refresh of the web
page; and wherein the set of files also instructs the user’s
web browser to interact with the web server without execut-
ing a full refresh of the web page.

A method of a web browser interacting with a web server
during a user session that prevents the entry of malicious
code therein is disclosed. The method comprises: generating
a set of files that define a web page and making the set of
files available for download from a web server; download-
ing, by a user’s web browser, the set of files from the web
server; and rendering, by the user’s web browser, a web page

10

15

20

25

30

35

40

45

50

55

60

65

4

defined by the set of files; instructing, by the set of files, the
user’s web browser to authenticate the user with the web
server by cryptographically proving that the user is in
possession of a private key corresponding to a public key
known to be associated with the user; and instructing, by the
set of files, the user’s web browser to request information
from the web server or to execute a command on the web
server while the set of files remains loaded in the user’s web
browser and wherein the user’s web browser does not
execute a full refresh of the web page that prevents the entry
of malicious code therein.

A method of verifying the integrity of a set of files that is
downloaded from a web server to a user’s web browser that
prevents the entry of malicious code during the download is
disclosed. The method comprises: providing a set of files
that define a web page and making the set of files available
for download from a web server; downloading, by the user’s
browser, the set of files from the web server; obtaining a
cryptographic value from a trusted source; performing a
cryptographic analysis of one or more files in the set of files
in conjunction with the cryptographic value; verifying the
integrity of the set of files only upon confirmation by the
cryptographic analysis.

A system that enables users to send messages and share
files using a web browser with end-to-end encryption while
avoiding the need for senders and recipients themselves
having to install encryption programs on their respective
computer devices is disclosed. The system comprises: a web
browser loaded on a computer (first web browser) associated
with the sender and in communication with a server on the
Internet; a web browser loaded on a computer (second web
browser) associated with the recipient and in communication
with the server on the Internet; client-side scripting, running
within the first web browser, encrypting any message cre-
ated by the sender and transmitting the encrypted message to
the server such that the unencrypted message is never
disclosed to the server; and client-side scripting, running
within the second browser, decrypting any encrypted mes-
sage received from the sender via the server so that the
recipient is able to read the message.

A system for exchanging information between a web
browser and a web server during a user session that prevents
the entry of malicious code therein is disclosed. The system
comprises: a set of files, defining a single persistent web
page, which is made available for download from the web
server; a user’s web browser loaded on a computer which
requests and downloads the set of files when a user session
with a corresponding web application is initiated; wherein
the single persistent web page, defined by the set of files, is
rendered in the user’s web browser; and wherein the set of
files remain loaded in the user’s web browser throughout the
duration of the user’s session with the web application such
that the user’s web browser does not execute a full refresh
of the web page at any time during the user’s session with
the web application that prevents the entry of malicious code
therein; and wherein the set of files instruct the user’s web
browser to interact with the user; and also instructs the user’s
web browser to interact with the web server.

A system for exchanging information between a web
browser and a web server during a user session that prevents
the entry of malicious code therein is disclosed. The system
comprises: a set of files, defining a web page, which is made
available for download from the web server; a user’s web
browser loaded on a computer which requests and down-
loads the set of files when a user session with a correspond-
ing web application is initiated; wherein the web page,
defined by the set of files, is rendered in the user’s web

US 12,363,080 B2

5

browser; and wherein the set of files instructs the user’s web
browser to authenticate the user with the web server by
cryptographically proving that the user is in possession of a
private key corresponding to a public key known to be
associated with the user; and wherein the set of files instructs
the user’s web browser to request information from the web
server or to execute a command on the web server while the
set of files remains loaded in the user’s web browser and
wherein the user’s web browser does not execute a full
refresh of the web page to prevent the entry of malicious
code therein.

A system for verifying the integrity of a set of files
defining a web page that is downloaded from a web server
and which prevents the entry of malicious code during said
download is disclosed. The system comprises: a set of files,
defining a web page, which is made available for download
from the web server; a user’s web browser loaded on a
computer which requests and downloads the set of files
when a user session with a corresponding web application is
initiated; and wherein a cryptographic analysis is performed
on one or more files in the set of files using a cryptographic
value obtained from a trusted source in order to verify or
deny the integrity of the set of files.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

Many aspects of the present disclosure can be better
understood with reference to the following drawings. The
components in the drawings are not necessarily to scale,
emphasis instead being placed upon clearly illustrating the
principles of the present disclosure. Moreover, in the draw-
ings, like reference numerals designate corresponding parts
throughout the several views.

FIGS. 1A, 1B-1 and 1B-2 show process diagrams for the
browser-based end-to-end encryption messaging system in
which FIG. 1A shows the process of sending an encrypted
message to a recipient through the system, while FIGS. 1B-1
and 1B-2 shows the process of receiving an encrypted
message from a sender through the system;

FIG. 1C is a system diagram of the present invention;

FIGS. 2A through 2E-3 show the operation of the appli-
cation program interface (API) used by the sender’s web
browser and the recipient’s web browser to communicate
with the server for performing functions to support the
system.

FIG. 2A shows the API process, Phase 1;

FIG. 2B shows the API process, Phase 2 for echo,
getcertificate, getaccountrecord, getmessages and getmes-
sages functions;

FIG. 2C shows the API process, Phase 2 for getmes-
sagepart function;

FIG. 2D shows the API process, Phase 2 for postmessage,
register] and register2 functions;

FIGS. 2E1-2E3 show a list of the functions supported by
the API, with information for each API function;

FIGS. 3A-3C show steps in the user experience as the user
completes the registration and setup process in order to
receive messages through the system;

FIG. 4A shows the format of a user’s secret key file;

FIG. 4B shows the format used for the certificates used to
authenticate users of the system, and shows the process for
verifying the digital signatures on these certificates;

FIG. 5 shows a form used by a sender to send an
encrypted message to a recipient;

FIG. 6 shows the format of a payload file containing an
encrypted message and supporting information;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 7 shows a form used by a user to begin a session with
the system;

FIG. 8 shows account information displayed by the sys-
tem for a user after beginning a session with the system;

FIG. 9 shows a log of messages received by the user
through the system;

FIG. 10 shows the operation of a conventional web
application; and

FIG. 11 shows the operation of the system/method of the
web page download, integrity verification, and web page
persistence disclosed herein.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring now to the figures, wherein like reference
numerals represent like parts throughout the several views,
exemplary embodiments of the present disclosure will be
described in detail. Throughout this description, various
components may be identified having specific values, these
values are provided as exemplary embodiments and should
not be limiting of various concepts of the present invention
as many comparable sizes and/or values may be imple-
mented.

The present invention will now be discussed in detail with
regard to the attached figures that were briefly described
above. In the following description, numerous specific
details are set forth illustrating the applicant’s best mode for
practicing the invention and enabling one of ordinary skill in
the art to make and use the invention. It should be under-
stood that the following are examples only of implementing
the system and method of the present invention and are not
meant to limit the invention to only these embodiments.

Referring to FIG. 1C, to meet the needs described above
and others, the present disclosure describes a system and
method which utilizes a sender’s web browser, a recipient’s
web browser, and a server. Client-side scripting running
within the sender’s web browser is used to encrypt messages
at the sender’s end, and client-side scripting running within
recipient’s web browsers is used to decrypt messages at the
recipient’s end. Encrypted messages from a sender are
relayed through the server to a recipient.

As such, this solution provides true end-to-end encryption
from the sender to the recipient. Only encrypted messages
reach the server. Unencrypted messages are never disclosed
to the server, and secret or private encryption keys are never
disclosed to the server. The solution is accessed by the
sender and the recipient via their web browsers, and does not
require senders or recipients to install special programs on
their systems. Senders can send messages to recipients
without being setup with the service, simply by knowing the
recipient’s unique URL for receiving messages through the
service.

Referring again to FIG. 1C, the sender and recipient must
rely on the server to provide the client-side scripting to
facilitate the encryption in the sender’s web browser and the
decryption in the recipient’s web browser. To address the
problem of securely implementing cryptography in a web
browser using client-side scripting originating from an
untrusted server, as described in the Background section of
this application, the system and method disclosed herein
aims to solve this longstanding problem using a two-
pronged solution whereby 1) the integrity of client-side code
downloaded by the web browser from the web server is
verified cryptographically using a cryptographic value
obtained from a trusted source, and 2) this code remains
persistently loaded in the user’s web browser throughout the

US 12,363,080 B2

7

duration of the user’s session with the system, thereby
eliminating the opportunity for the web server to deliver new
code to the web browser which might be compromised.

In the preferred embodiment, the following cryptographic
primitives are used to implement the system and method of
the present invention: Elliptic Curve Diffie-Hellman key
agreement protocol (ECDH), Elliptic Curve Digital Signa-
ture Algorithm (ECDSA), Authenticated FEncryption
scheme-Galois/Counter Mode (AES-GCM) symmetric
encryption, the SHA256 hashing algorithm, and the
PBKDF2 password-based key derivation function. All cli-
ent-side scripting is implemented using Javascript, and all
client-side cryptography is implemented using the Web
Crypto API.

To use the system and method of the present invention
(e.g., to register for the service of the system and method of
the present invention (hereinafter “service” or “Encrypted-
Send.com” as used in several of the Figures), or to send an
encrypted message through the service, or to receive
encrypted messages through the service), a user must first
point their web browser to a URL where the service is
hosted. Upon doing so, the user’s browser downloads sev-
eral html, .css, and .js files from the web server (e.g., see
FIGS. 1A-9). These files define a single persistent web page
which remains loaded in the user’s web browser throughout
the duration of the user’s session with the service. The .html
and .css files contain code that is used to present the user
interface to the user, in order for the user to interact with the
service. The js files contain client-side scripting that runs
within the user’s web browser and performs three functions:
First, the client-side scripting performs all client-side cryp-
tography operations. Secondly, the client-side scripting
interacts with the server by way of an API hosted by the
server. Third, the client-side scripting manages the user
interface by displaying and hiding various elements of the
user interface as needed, in order to present the user with the
elements needed for the operation that the user is performing
at any given time.

One of the objectives of the present invention is to
mitigate a potential security vulnerability stemming from the
possibility of malicious client-side scripting. One skilled in
the art will notice that a conventional web browser appli-
cation is potentially vulnerable to a malicious scripting
attack targeting the set of files that define the web page
which are downloaded from the web server to the user’s web
browser (see FIG. 10). If the operator of the service, or an
attacker that is able to compromise the web server, were to
exploit the system by inserting malicious code in one or
more of these files, then he/she may be able to capture
sensitive information sent or received by the user through
the system in unencrypted form, or capture the user’s private
key. As such, Applicant has identified a solution to this
potential security vulnerability, namely, the performance of
a cryptographic analysis on one or more the files down-
loaded from the web server in conjunction with a crypto-
graphic value obtained from a trusted source (e.g., a trusted
third party verifier, a trusted signer, etc.). The cryptographic
analysis is performed to verify the integrity of the set of files
in order to warn the user of a possibly compromise of these
files before the user exposes any sensitive information to
potentially malicious client-side scripting in these files. As
one skilled in the art would also recognize, a cryptographic
analysis encompasses a variety analyses which may include
hashing, digital signatures, public key cryptography, etc.,
and which are discussed in more detail below. Moreover,
this cryptographic analysis can be conducted by the user
himself’herself or by the user’s web browser.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Applying the foregoing cryptographic analysis with other
unique features of the present invention, namely, the gen-
eration of the set of files that define a single persistent web
page and preventing the web page from being refreshed
during the user’s session, results in another solution to a
malicious scripting attack targeting the set of files.

The potential for a malicious scripting attack, like the one
described above, is the reason for the design of the system
and method disclosed herein and shown in FIG. 11, where a
set of files defining a single persistent web page is down-
loaded by the user’s web browser from the server at the start
of'the session (FIG. 11, block 100), and the web page defined
by this set of files remains loaded in the user’s web browser
throughout the duration of the user’s session with the service
(FIG. 11, block 110). This is in contrast to the design
typically used in web applications, as shown in FIG. 10,
where a new web page is dynamically generated by the web
server and downloaded by the user’s web browser from the
web server after each action by the user (FIG. 10, blocks
1-5), replacing the previously loaded web page. In contrast,
in the present system and method, at no point during the
user’s session is a full page refresh done; instead client-side
scripting associated with the single persistent web page
instructs the web browser to interact with the user (FIG. 11,
block 140), and the web server through an API (FIG. 11,
block 150), and to display updated information retrieved by
the user’s web browser from the web server (FIG. 11, block
160) as the user interacts with the system. The objective of
this design is to provide the user with a means to mitigate a
potential malicious scripting attack. To protect himself/
herself from this threat, it is necessary for the user to ensure
the integrity of this set of files only once (FIG. 11, block
130), at the beginning of the session—not repeatedly
throughout the session as would be necessary after each
full-page refresh with a conventional system. Therefore, at
the beginning of the user’s session, if the user is able to
verify the integrity of the set of files that define the single
persistent web page which remains loaded in the user’s web
browser throughout the duration of the user’s session with
the service, through the use of a cryptographic analysis
based on reference cryptographic values as described herein,
then this is sufficient to protect himselt/herself from a
malicious scripting attack throughout their session with the
service. Such verification would be impossible with a con-
ventional system, where a new web page is dynamically
generated by the web server and downloaded by the user’s
web browser from the web server after each action by the
user, because reference cryptographic values for these
dynamically generated pages would be unavailable.

One method of ensuring the integrity of one or more files
in the set of files that defines a web page is to take a
cryptographic hash of the file(s), and compare this hash
value to a reference hash value of one or more known safe
files. This exemplary cryptographic analysis is set forth in
steps 130, 131, 132 and 133 in FIG. 11. Users can perform
this procedure manually by using the ‘save page as’ function
in their web browser, or the developer tools interface in their
web browser, to save one or more of the currently loaded
files to their system. Then, the user can use a program (such
as openssl) to take a cryptographic hash of the file(s), then
compare this hash to a reference hash of one or more known
safe files, perhaps obtained from a trusted third party veri-
fier.

In addition, another exemplary cryptographic analysis is
set forth in steps 130A, 131A, 132A and 133 in FIG. 11. In
particular, this method ensures the integrity of one or more

US 12,363,080 B2

9

files in the set of files that defines a web page by seeking to
verify a cryptographic digital signature over the file(s) made
by a trusted signer.

Even further, the process of ensuring the integrity of one
or more files in the set of files that defines a web page using
one of the cryptographic methods described above can be
automated by the user’s web browser, by computer code
embedded in the user’s web browser or a web browser
plug-in that obtains the necessary reference cryptographic
values from a trusted source, and performs the verification,
and advises the user if the verification passed (indicating that
the integrity of the file(s) is intact) and/or advises the user if
verification failed (indicate that the file(s) may have been
compromised).

Moreover, the task of ensuring the integrity of a set of files
that define a web page can be simplified by utilizing sub-
resource integrity in the root document for references to all
supporting files in the set of files. If subresource integrity is
used in the root document in references to all supporting
files, then ensuring the integrity of the root document via one
of the procedures described above also ensures the integrity
of all supporting files, as any change to any supporting file
would necessitate a change to its reference in the root
document as well, otherwise the change would be detected
by the browser when enforcing subresource integrity.

It is also contemplated that the threat of malicious code
being inserted into one or more files in the set of files
downloaded by the user’s web browser from the web server
can be further mitigated through the use of a strict content
security policy. Furthermore, it is contemplated that one
aspect of the task of ensuring the integrity of the set of files
defining a web page might involve ensuring that the web
page defined by this set of files is not capable of requesting
a new web page that the browser would load in place of
itself.

FIG. 1A shows the process of sending an encrypted
message over the Internet 10 to a recipient through the
system 20 (FIG. 1C). To send a message to a recipient, the
sender first points their web browser to the web server 22,
to a unique URL for the recipient. Upon doing so, the user’s
browser downloads the html, .css, and .js files which define
the single persistent web page which remains loaded in the
user’s web browser throughout the duration of the user’s
session with the service. Client-side scripting running within
the user’s web browser presents the form shown in FIG. 5,
for composing a message. In addition, the recipient’s cer-
tificate is downloaded from the server to the sender’s web
browser through the API. As shown in FIG. 4B, the recipi-
ent’s certificate contains the recipient’s identifying informa-
tion and the recipient’s public ECDH key, and is digitally
signed by both the recipient and the server. These signatures
are verified by client-side scripting running within the
sender’s web browser. The recipient’s signature is verified
using the recipient’s public key contained in the certificate,
and the server’s signature is verified using the server’s
public key hardcoded in the client side scripting. After
composing a message to the recipient (optionally including
one or more attached files) the client-side scripting running
within the sender’s web browser then uses ECDHE to derive
a symmetric encryption key, based on the recipient’s public
key. The message is then encrypted using the derived key,
then the encrypted message is uploaded by the sender’s web
browser to the server through an API.

FIGS. 1B-1 and 1B-2 shows the process of receiving an
encrypted message over the Internet 10 from a sender
through the system 20 (FIG. 1C). To retrieve a message, the
recipient first points their web browser to the server 22, to

10

15

20

25

30

35

40

45

50

55

60

65

10

a URL for the service. Upon doing so, the user’s browser
downloads the .html, .css, and js files which define the
single persistent web page which remains loaded in the
user’s web browser throughout the duration of the user’s
session with the service. Client-side scripting running within
the user’s web browser presents the form shown in FIG. 7,
for beginning a session with the system. The recipient then
provides his/her secret key file and password. The format of
the user’s secret key file can be seen in FIG. 4A. At this
point, the client-side scripting derives a decryption key from
the password using PBKDF2 with the number of rounds
specified in the secret key file. The user’s encrypted ECDH
private key is then extracted from the secret key file, and the
decryption key derived from the password is then used to
decrypt the user’s ECDH private key. The private key is
stored in a Web Crypto API CryptoKey object, with the
extractable property set to false. This enables the user’s
private key to be used to sign messages or derive symmetric
keys, but prevents the private key from being read for the
remainder of the user’s session. Client-side scripting run-
ning within the user’s web browser then performs a query to
the server through an API to request user account informa-
tion for the recipient. An authentication process then com-
mences between the web browser and the server, via the API,
to ensure that the recipient is in possession of the private key
corresponding to recipient’s public key sent in the request.
This process is carried out by way of a cryptographic process
that enables the server to verify that the recipient is in
possession of the private key, without the need for the
recipient to disclose the private key to the server. Upon
successful authentication, account information for the
recipient is returned by the APIL and this information is
displayed for the user by client side scripting running within
the user’s web browser. The user can then request to view a
log of messages received. Client-side scripting running
within the user’s web browser then performs a query to the
server through an API to request a log of messages received.
An authentication process similar to the one described above
commences. Upon successful authentication, metadata for
each message is returned by the API, along with the
encrypted subject, message text, and list of attachments for
each message. Client-side scripting running within the
recipient’s web browser then decrypts the subject and mes-
sage text of each message using the recipient’s private key
to derive the symmetric encryption key used by the sender
to encrypt these parts. Then, metadata for each message is
displayed, along with the decrypted subject, message text,
and list of attachments for each message.

At this point, the user can request a file attached to a
message. Client-side scripting running within the recipient’s
web browser then requests the encrypted attachment from
the server via the API. An authentication process similar to
the one described above commences. Upon successful
authentication, the requested encrypted message part is
returned by the API, and client-side running within the
recipient’s web browser decrypts the file and makes the file
available to the recipient to open or save.

FIGS. 2A-2D show the architecture of the API hosted by
the server. Client-side scripting running within users’ web
browsers accesses the API through an SSI/TLS connection
over HTTPS, using the browser’s built-in XML HttpRequest
request (XHR) object. The API allows client web browsers
to send requests and commands to the server needed to
support system functions such as registering for the service,
requesting certificates of other users of the system, enabling
senders to upload encrypted messages for recipients, access-

US 12,363,080 B2

11

ing logs of messages sent and received, enabling recipients
to download encrypted messages that they’ve received, etc.

Each API operation consists of two phases, where each
phase consists of an HT'TPS round trip between the browser
and the server. FIG. 2A shows phase 1 of an API operation.
Phase 1 is the same for all API functions. At the conclusion
of phase 1, the client and the server each have a mutually
agreed upon ephemeral shared secret and exchange hash.
The mutually agreed upon ephemeral shared secret and
exchange hash derived in phase 1 are used in phase 2, where
the client sends a request or command to the server, and the
server returns a response. The procedure used in phase 2
depends on the nature of the request or command sent by the
client to the server in phase 2. FIGS. 2B, 2C, and 2D show
phase 2 of an API operation for various API functions. As
can be seen in FIGS. 2A, 2B, 2C, and 2D, the API mutually
authenticates the client and the server during each API
operation, using a cryptographic schema involving the per-
manent keys for the client and the server, the ephemeral keys
generated by the client and the server in phase 1, the shared
secret derived by the client and the server in phase 1, and the
exchange hash derived by the client and the server in phase
1. The ephemeral shared secret is derived from the client and
server ephemeral keys in phase 1 using ECDHE. The
exchange hash is derived in phase 1 using a SHA256 hash
function over the client permanent public key, the server
permanent public key, the client ephemeral public key, the
server ephemeral public key, and the ephemeral shared
secret. Digital signatures over the exchange hash by both the
client and the server, each using their permanent private
ECDH keys with ECDSA, are used to assure each party that
the other is in possession of the permanent private key
corresponding to the permanent public key provided in
phase 1, without the need for either party to disclose their
permanent private key to the other. Thus, the client is able
to verify that the server is in possession of the permanent
private ECDH key corresponding to a known pinned public
key for the server in phase 1, and the server is able to verify
that the client is in possession of the permanent private
ECDH key corresponding to public key on record for that
client in phase 2. The server uses memory to store the shared
secret and exchange hash (indexed by the client’s permanent
public key and ephemeral public key provided by the client
in phase 1) for the short duration between the two phases
comprising an API request. However, no state information is
stored on the server after the completion of an API request.
Some API functions (such as retrieving messages for a
recipient) require the client to authenticate, while others
(such as registering for the service) do not require the client
to authenticate. For operations that require the client to
authenticate, the user is identified at this point by the
permanent public ECDH key presented in the request, so
that the user can be authenticated. For operations that do not
require the client to authenticate, the same process is used,
except that the client may use a randomly generated ECDH
key pair in place of the permanent key pair, and the server
does not attempt to identify or authenticate the client for
these operations. In addition to the authentication function
performed by the API, all requests and responses sent
between client web browsers and the server through the API
during phase 2 are encrypted using AES-GCM with the
ephemeral shared secret derived from the client and server
ephemeral keys in phase 1. This ensures secrecy, authentic-
ity, and integrity of requests and responses between client
web browsers and the server during phase 2. Therefore, all
communications between client web browsers and the server
are ‘double encrypted’, first by the API, then secondly by the

10

15

20

25

30

35

40

45

50

55

60

65

12

SSL/TLS channel. In addition, perfect forward secrecy is
guaranteed, because the ephemeral shared secret used for
AES-GCM by the API in phase 2 is derived from the
ephemeral keys. The schema used by the API is also resistant
to replay attacks.

FIGS. 2E-1 through 2E-3 show a list of the functions
supported by the API. Functions that execute queries are
generally done using HTTPS GET requests in phase 2, and
results of queries are returned in a JSON formatted response,
as shown in FIG. 2B. Functions that retrieve parts of
messages are generally done using HTTPS GET requests in
phase 2, and encrypted truncated message payloads are
returned as binary data, as shown in FIG. 2C. Functions that
execute commands are generally done using HTTPS POST
requests in phase 2, and results of commands are returned in
a JSON formatted response, as shown in FIG. 2D. For both
phase 1 and phase 2 of an API operation, the server returns
a 2xx status code in the HTTPS response header to indicate
success, and a 4xx status code in the HTTPS response
header to indicate a failure. These same status codes are
included in the JSON response as well for phase 1 and phase
2 in cases where a JSON response is returned, along with
more detailed status messages, as can be seen in FIGS. 2B
and 2D.

In order to receive messages through the system, a user
must first register for the service and complete a setup
process. FIGS. 3A-3C show the steps involved in the setup
process. To register for the service, the user first points their
web browser to a URL on the server where the service is
hosted. Upon doing so, the user’s browser downloads the
Jhtml, .css, and .js files which define the single persistent
web page which remains loaded in the user’s web browser
throughout the duration of the user’s session with the
service. Upon selecting an option to register for the service,
client-side scripting running within the user’s web browser
presents the form shown in FIG. 3A. After providing their
name, company (optionally), and email address in the form
in FIG. 3A, the user then proceeds to the form in FIG. 3B
where they enter a passphrase. At this point, client-side
scripting running within the user’s web browser then gen-
erates a random ECDH key pair for the user using the P-256
elliptical curve. Next, a PBKDF2 function with one million
iterations of SHA256 hashing is used to derive a 256-bit
AES-GCM encryption key from the user’s passphrase. This
key is then used with an AES-GCM function to encrypt the
user’s ECDH private key. The encrypted ECDH private key
is stored in the secret key file, along with the supporting
information shown in FIG. 4A.

In addition to the secret key file being generated for the
user, a certificate is also generated for the user. As shown in
FIG. 4B, the certificate is created in JSON format, and
contains the user’s first name, last name, company, email
address, creation date, version information and ECDH pub-
lic key. The certificate is then self-signed by the user, using
the user’s ECDH private key with ECDSA. This signature
can later be verified to prove that the user was in possession
of the private key corresponding to the public key contained
in the certificate when the certificate was signed by the user.
This verification procedure is also shown in FIG. 4B.

In FIG. 3C, the user is then prompted to save the secret
key file to their system. After saving the secret key file, the
user’s web browser executes a ‘register]l’ API call to the
server, passing the user’s certificate that was created in the
previous step. The server then verifies that the public key
contained in the certificate is valid, that the creation date is
within a given tolerance of the current date and time, and
that the user’s self-signed signature is valid given the user’s

US 12,363,080 B2

13

public key contained in the certificate. If all checks pass, the
server then sends an email to the user containing a verifi-
cation URL. The verification URL contains the user’s cer-
tificate passed in the ‘registerl” API call, encrypted using
AES-GCM with a key known only to the server. The user is
then presented with a message notifying them that a verifi-
cation email has been sent to the address that they provided
in the form of FIG. 3A. The user then receives a verification
email, containing the verification URL. Upon accessing the
verification URL, the user’s web browser loads client-side
scripting which then executes a ‘register2” API call to the
server, passing the AES-GCM encrypted certificate con-
tained in the verification URL sent in the verification email
previously by the ‘registerl’ operation. The server then
attempts to decrypt the encrypted certificate. If successful,
the server then performs the same set of verification steps
described above during the response to the ‘registerl’ API
call. If decryption was successful and all verification checks
pass, then this ensures that the individual claiming to have
the name and company affiliation appearing in the certificate
is in possession of the private key corresponding to the
public key in the certificate, and was able to access a
verification URL sent by email from the system to the email
address in the certificate. At this point, the server signs the
certificate using the server’s ECDH private key with
ECDSA, and this signature is appended to the certificate.
Then, a database record is created for the user, containing
information from the certificate, and the certificate itself. At
this point, the user is presented with a message advising the
user that the setup process is complete and that the account
is active. The user is also provided with a URL that they can
then provide to their senders, where senders can access a
form to send encrypted messages to the user. The user also
receives an email from the system containing the same
information. Going forward, the user’s encrypted private
ECDH key contained in the secret key file that the user
created during the setup process is used to authenticate the
user with the system, and is used to decrypt messages that
the user receives through the system.

As noted previously, FIG. 5 shows a form that is used by
a sender to send an encrypted message to a recipient via the
process shown in FIG. 1A. After composing a message to the
recipient (optionally containing one or more attached files)
client-side scripting running within the user’s web browser
creates a payload file containing the encrypted message, as
per the format shown in FIG. 6, using the procedure in the
following paragraph.

As shown in FIG. 6, the payload file consists of four
segments: metadata, the parts data cipher, the signed header,
and the payload cipher bytes. To create the payload file, first
ECDHE is used to derive a 256-bit symmetric AES-GCM
encryption key based on the sender’s private ECDH key and
the recipient’s public ECDH key. If the sender has not
authenticated with the system, then a random ECDH key
pair is generated for the sender to use for the ECDHE
process. Next, the first 144 bytes of metadata is generated,
including the sender and recipient X and Y public ECDH
key values. Next, the parts data is collected, as shown on the
left of FIG. 6. Each message consists of N parts. The subject
of the message is indexed as part O, the text of the message
is indexed as part 1, then any attached files are indexed from
part 2 to part N-1. The parts data consists of the name, mime
type, SHA256 hash of each part. Each part is encrypted
using AES-GCM with the derived key. Next, the parts data
cipher is generated using AES-GCM with the derived key to
encrypt the parts data. The length (in bytes) of the parts data
cipher is then appended to the metadata, followed by 64 (the

10

15

20

25

30

35

40

45

50

55

60

65

14

length, in bytes, of an ECDSA signature). Next, the length
(in bytes) of each encrypted message part is appended to the
metadata, followed by four zero bytes to mark the end of the
metadata. Next, the signed header is generated using
ECDSA to create a digital signature over the metadata and
the parts data, using the sender’s private key. The payload
file is then constructed as shown in FIG. 6 by appending the
metadata, the parts data cipher, the signed header, and each
encrypted message part. This payload file is then uploaded
to the server using the ‘postmessage’ API call. The payload
file is then stored on the server. The server then parses the
metadata of the payload file to capture the public keys of the
recipient and sender, and uses these keys to identify the
account records of the recipient and sender (if possible). A
record for the message is stored in the database consisting of
a unique identifier for the message, a pointer to the recipient,
and pointer to the sender (if known), the message size (in
bytes), and the timestamp. Finally, the server (optionally)
notifies the recipient that they’ve received a message
through the system.

As noted previously, FIG. 7 shows a form that can be used
by a registered user to begin a session with the system and
authenticate with the system via the process shown in FIGS.
1B-1 through 1B-2. After successfully authenticating, the
user’s private key is stored securely in a Web Crypto API
CryptoKey object, and is used to commence API calls to the
server such as those shown in FIGS. 2E-1 through 2E-3 via
the procedures shown in FIGS. 2A, 2B, 2C, and 2D, in order
to facilitate further operations. At this point, the user’s web
browser executes a ‘getaccountrecord’ API call to the server,
and the information returned by the API is used to present
the user with general account information, as shown in FIG.
8. The user is also presented with options to view account
information, views logs of messages sent and received, and
send a message.

FIG. 9 shows a log of messages received by the user
through the system. After beginning a session with the
system as described above, and selecting the option to view
received messages, client-side scripting running within the
user’s web browser executes a ‘getmessages’ API call to the
server, with the string ‘received’ as the input parameter. The
server queries the database to get the message id, sender’s
name (if known) and timestamp of each message, and this
information is returned by the API, and used to populate the
log of messages received as shown in FIG. 9. The process is
similar for viewing a log of messages sent, except the string
‘sent’ (instead of ‘received’) is used as the input parameter
to the ‘getmessages’ API call to the server.

Some of the pieces of information shown in the logs of
messages presented to the user are not returned by the
‘getmessages’ API call. For example, this is the case with the
subject of each message, the text of each message, and the
names of any files attached to each message. These pieces of
information come from the encrypted message payloads, not
the ‘getmessages’ API call. To present these pieces of
information, client-side scripting running within the user’s
web browser executes a ‘getmessagepart’ API call to the
server for each message appearing in the log, passing the
message id and the index of the requested part number as
inputs. Using the metadata in the encrypted payload file of
the message, the server parses the encrypted payload file to
determine the indexes of the starting and ending bytes of
each encrypted part in the encrypted payload file. The
‘getmessagepart’ API call returns a truncated encrypted
payload file, including the metadata, the parts data cipher,
the signed header, and the payload cipher bytes for parts 0
and 1, and the payload cipher bytes for any part requested

US 12,363,080 B2

15

with index 2 or greater, without the payload cipher bytes for
any parts that were not requested with index 2 or greater.
Client-side scripting running within the user’s web browser
then derives the symmetric AES-GCM key used to encrypt
the encrypted parts of the truncated encrypted payload file,
using ECDHE with the recipient’s private ECDH key and
the sender’s public ECDH key contained in the metadata of
the truncated encrypted payload file. Using the derived key,
client-side scripting running within the user’s web browser
then decrypts the requested part from truncated encrypted
payload file, using the derived key, through the inverse of the
process used to create the encrypted payload file. This
decrypted information is then used to populate the subject
and text for each message shown in the message logs, and
is also used to show a list of any files attached to the
message.

If a user requests a file attached to a message, client-side
scripting running within the user’s web browser executes a
‘getmessagepart’ API call to the server, passing the message
id and the index of the attachment. This truncated encrypted
payload file returned by the ‘getmessagepart’” API call,
containing the encrypted file requested by the user, is then
decrypted by client-side scripting running within the user’s
web browser, using the same process described in the
previous paragraph, and the user is given the option to open
or save the file.

As noted previously, numerous specific details set forth
herein illustrate the applicant’s best mode for practicing the
invention and enabling one of ordinary skill in the art to
make and use the invention. It should be understood that the
preceding are examples only of implementing the system
and method of the present invention and are not meant to
limit the invention to only these embodiments. For example,
other methods of specifying a recipient of an encrypted
message are contemplated, in addition to the one described
herein, where the first few bytes of X value of the recipient’s
ECDH public key are encoded in the unique URL for the
recipient. Methods involving schemes where recipients are
identified by friendly usernames or addresses are contem-
plated. As another example, other methods of storing users’
private keys are contemplated, in addition to the one
described herein, where users’ private keys are encrypted
using a key derived from a password, and stored in a file.
Methods involving schemes where users private keys are
derived directly from a password using a password based
key derivation function, or stored on a trusted platform
module, are contemplated.

In addition, it should be noted that users must trust the
system to authenticate, via the procedure described in the
registration process, that the certificates and/or public keys

10

15

20

25

30

35

40

45

16

of other users in fact belong to those users. Users may also
validate the authenticity of other users’ certificates and/or
public keys via some out-of-band process, such as tele-
phone, SMS, fax, etc.

Finally, it should be noted that the methods described
herein for securely implementing cryptography using client-
side scripting running in a web browser that originates from
an untrusted server through the use of a persistent web page
and/or verifying the integrity of a set of files that define a
web page can be applied not only to the system described
herein (for encrypted messaging), but also to any browser-
based system where the user is sending or receiving or
managing sensitive information—including (but not limited
to) browser-based systems for handling crypto-currencies,
browser-based systems for encrypted cloud-based file stor-
age, browser-based authentication systems, etc.

While the invention has been described in detail and with
reference to specific examples thereof, it will be apparent to
one skilled in the art that various changes and modifications
can be made therein without departing from the spirit and
scope thereof.

What is claimed is:
1. A method of encrypting a message using a web browser
comprising the steps of:

running said web browser on a user’s computing device;

downloading, by said web browser, client-side scripting
from an untrusted first server operated by a first pro-
vider;

verifying, by said web browser, integrity of said client-
side scripting in conjunction with a cryptographic hash
obtained from a second server, operated by a second
provider, trusted by the user; and

executing, by said web browser, said client-side scripting
to encrypt said message only upon success of said
verification.

2. A method of decrypting an encrypted message using a

web browser comprising the steps of:

running said web browser on a user’s computing device;

downloading, by said web browser, client-side scripting
from an untrusted first server operated by a first pro-
vider;

verifying, by said web browser, integrity of said client-
side scripting in conjunction with a cryptographic hash
obtained from a second server, operated by a second
provider, trusted by the user; and

executing, by said web browser, said client-side scripting
to decrypt said encrypted message only upon success of
said verification.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

